oUBGRAPH

FINDINGS REPORT

Hushline

December 30, 2025

Prepared for: Hushline

Subgraph Technologies, Inc.
345 Av. Victoria, Suite 400
Montreal, Quebec
https://subgraph.com

Contents

Overview 4
Summary 5
Observations 6
SQLinjection e e e e e e 6
Cross-site scripting e e e e e e e e e e 6
Cross-siterequest forgery L e e 6
Details 7
V-001: Blind SSRF Private Network Enumeration in ProfileLinks 7
DisCUSSION e e e e e e e e e e e e 7

Impact Analysis L e e e e e e 7
Remediation Recommendations 8
Additional Information 8

V-002: Client-Side Encryption Timeout Encryption Failure 9
DiSCUSSION o o o e e e e e e e e e e e 9

Impact Analysis 10
Remediation Recommendations L. 10
Additional Information 12

V-003: Sequential Message IDs e e e e e e e e 13
DiSCUSSION v v i e e e e e e e e e e e e e 13

Impact Analysis L e e e e 13
Remediation Recommendations 13
Additional Information 13
Appendix 14
Methodology e e e e e e 14
Description of testing activities L L 14
Reporting e 15
Severityratings e e e e e e e 15
Contextual factors e e e e e 17
Likelihood e 18
Remediationstatus 19

Overview

We conducted a penetration test of the Hushline application in December of 2025. This report documents
our observations and security findings.

Most testing and review was performed on the v0 .4 .76 version source repository in our own testing en-
vironment using Docker. We also made an account on the production application (https://tip.hushline.app)
but no live testing was performed on production. The production application was used as a reference to
compare against our testing environment.

Summary

No. Title Severity Remediation

V-001 Blind SSRF Private Network Enumeration in Profile Links
V-002 Client-Side Encryption Timeout Encryption Failure Low
V-003 Sequential Message IDs Low

Observations

As part of the test, we looked for common vulnerabilities using manual and automated techniques as well
as source code review. This section, separate from the security findings, lists our observations.

SQL injection

We performed automated testing and source code review of the front-end and back-end code to look for
potential SQL injection vulnerabilities.

The database operations are implemented with SQLAlchemy. This library, when best practices are
employed, will prevent SQL injection vulnerabilities. During our test, we looked for issues like raw SQL
queries with user input, unsafe string concatenation of user input, and other known bad practices. We did
not observe any cases where the application deviated from best practices in unsafe ways.

Cross-site scripting

We looked for cross-site scripting issues using manual and automated methods in addition to reviewing
source code.

The application renders user-supplied input using a combination of Jinja templating with the
markupsafe and Bleach libraries. We didn’t observe any cases where user-supplied input was
rendered back unsafely.

Cross-site request forgery

We performed manual tests and reviewed source code to determine if cross-site request forgery (CSRF)
issues were present. This included tests like submitting forms with bad or missing CSRF tokens.

The application incorporates the WTForms library for CSRF protection and this proved mostly effective
during our tests.

In one instance, we observed that the form for deleting messages did not include a CSRF token. However,
we could not exploit the issue because the application sets SameSite headers when setting cookies.
Therefore, submitting a malicious off-site form caused a redirect to the authentication page due to lack of
cookie-based authentication credentials.

The developers should review the message deletion workflow to determine if the missing CSRF token is an
oversight.

Details

V-001: Blind SSRF Private Network Enumeration in Profile Links

Severity Remediation

v BRG]

Discussion

Hushline includes a feature to perform basic checks for valid social media profiles included in user profiles.

There is a blind server-side request forgery (SSRF) vulnerability that is present when the application attempts
to verify URLs submitted in user Profile Details. The issue is that the code that makes requests to external
sites does not prevent private IP addresses from being requested.

The vulnerable code exists in hushline/settings/common.py:verify_url().

We performed tests on our network to see what was possible, examining application logs, and network
traffic from the application to our network. We found response timing patterns that enable enumeration
of the private network where the application is hosted.

Impact Analysis
The attacker must be authenticated to the application to exploit the issue. To exploit it, they will automate
profile link submissions containing private IPs and observe the response metadata from the application.

There are a few limitations to exploitation:

e Only HTTPS URLs will be requested by the application
e The attacker must infer details about the network from the timing of application responses

We tested a few scenarios: - Looking for ports on the local machine 127.0.0.1 - Looking for live IP addresses
in private IP ranges, using common ports for TLS-based and non-TLS based network services

Our tests revealed some response timing patterns that could be used to infer whether IP addresses were
live and identify ports that were open and running services.

We explored a scenario where third-party services echo back full URLs, allowing an attacker to use the
verification status to enumerate services. To take advantage of this scenario, the service must have a valid
TLS certificate that is not self-signed and return the full URL in a response with a 200 status code.

For this to work, the attacker would submit a URL like the following:

https://private-ip/verify

In a case where all of these conditions are met, the application will set the verified symbol in the profile.
This would allow enumeration of the service without measuring response times. While possible, it doesn’t
seem like this scenario is at all that common.

Remediation Recommendations

The verification function should not be able to request private IP addresses. It could check against a block
list such as the following:

e |ocalhost

e 127.0.0.0/8

e 10.0.0.0/8

e 172.16.0.0/12
e 192.168.0.0/16
e ::1/128

o fc00::/7

o fe80::/10

Additional Information

N/A

V-002: Client-Side Encryption Timeout Encryption Failure

Severity Remediation

Discussion

There is an issue in the client-side JavaScript message encryption operations that could allow unencrypted
text to be submitted to the server. If the encryption operations take too long when upon submission then
unencrypted text will be submitted to the server.

Theissueis presentinassets/js/client-side-encryption. js:document.addEventListener().

The affected function adds an event listener on form submission that perform the necessary steps to
encrypt the form submission fields but sets a timeout (100ms) at the end of the listener to wait for the
page's DOM to update with the encrypted fields before submission. If the operations take longer, the form
will still be submitted even if the DOM has not been updated with encrypted text.

This is a snippet of the code at the end of form’s submit event listener:

setTimeout () => {
form.submit () ;
}, 100);

We were able to reproduce the issue by changing the timeout value in our browser console to 1ms and
then submitting the message form.

The following screenshot shows that the unencrypted text was submitted to the server:

Request
Pretty Raw Hex I in =

POST /to/admin HTTP/1.1

Host: 127.0.0.1:2080

User-Agent: Mozilla/5.® (X11; Linux xB6_64; 1v:145.0) Gecko/20188101 Firefox/145.0

Accept: text/html, application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;g=8.5

Accept-Encoding: gzip, deflate, bﬂ

Content-Type: application/x-www-form-urlencoded

Content-Length: 232

9 Origin: null

12 Connection: keep-alive

11 Cookie: session=
gAAAAABPTY2y2bRFymBT2J_PgUuGReinNrcCTU@1AW1ibi@MynPg3NaLBB7y5sqDDZivGUWUbW77P1QLG2PNXLIZUTd
Lv¥kPyuiagMLopblCDRIMcYYUtTXQnxCt4FTYLhHLKFg2Yh9kf jm7wx77R683EKGoujiEWIRRMTO3c4a2Kz -y4L8H_Z
Y=

12 Upgrade-Insecure-Requests: 1

12 Sec-Fetch-Dest: document

14 Sec-Fetch-Mode: navigate

15 Sec-Fetch-Site: same-origin

16 Sec-Fetch-User: 71

17 Priority: u=e, i

18

19 encrypted_email_body=&csrf_token=

ImMzOGNmYz JkMTVhZDIZzZGY1ZGFmYzk2ZNWRhNzc10GY1YTdiMWFiNzYi.aU8tsg. - IpobbVPOWIcFhc8y947dLSgKoU

&field_@=mckinney%4@subgraph.com&field_1=I+expect+this+will+be+encrypted+when+I+submit+it.&

captcha_answer=13

[O TN R

[+=]

Impact Analysis
This issue isn’t likely to occur very often but it could happen when a very large message is submitted and/or
a message is submitted from a low-powered device.

The consequences are the following:
1. A message that is supposed to be unencrypted is sent to the server in plaintext. This could appear in
server logs. The application does not successfully save the message for the Hushline user recipient.

2. As the message is not saved but the application, the person who sent the message may expect that
it was received.

In the case of #2, the normal UX of showing the encrypted content prior to submission does not occur.
A user who is familiar with the application may suspect that something didn’t work. But it all happens
so quickly that they could miss the visual cues. A first-time user would have no idea what is supposed to
happen when they submit a message.

Remediation Recommendations

The submit event listener could be written to avoid using timeouts. For example:

10

form.addEventListener("submit", async function (event) {
event.preventDefault();

try {
// Build an email body with all fields, encrypt it, and add it to
— the DOM as a hidden field
let emailBody = "";
document.querySelectorAll(".form-field").forEach((field) => {
const value = getFieldValue(field);
const label = getFieldLabel(field);
emailBody += "#

< ${label}\n\n${value}\n\n \n\n";
3
const encryptedEmailBody = await encryptMessage (
publicKeyArmored,
emailBody,

)

if (encryptedEmailBody) {
const encryptedEmailBodyEl
"encrypted_email_body",
)3
encryptedEmailBodyEl.value
} else {
throw new Error("Client-side encryption failed for email body");

document . getElementById(

encryptedEmailBody;

}

// Loop through all encrypted fields and encrypt them
// Use Promise.all to wait for all encryptions to complete
const encryptionPromises = Array.from(
document .querySelectorAl1l(".encrypted-field")
) .map(async (field) => {
// Do the encryption steps

} else {
throw new Error(
“Client-side encryption failed for field: ${field.name ||
< "unknown"}"
)3
}
s

11

// Wait for all encryption operations to complete before
— submitting
await Promise.all(encryptionPromises);

console.log("All encryptions completed successfully - submitting
— form");

// Now it's safe to submit the form
form.submit () ;

} catch (error) {
console.error ("Encryption error:", error);
alert(
"Message encryption failed. Your message was NOT submitted for
— security reasons. Please try again."
)
b
s

UX enhancements could also address the issue. For example, some indication that the message was
encrypted successfully and a prompt to confirm submission.

Additional Information

N/A

12

V-003: Sequential Message IDs

Severity Remediation

Discussion

The IDs for submitted messages are sequential and instance-wide.

While the messages are encrypted and we tested that one user cannot access another user’s messages,
there are a few issues to consider.

1. Latent vulnerabilities in the future where being able to guess message IDs is useful.

2. It also may not be desirable for users to know how many messages have been processed by the
service.

Impact Analysis

Guessable message IDs may be useful in potential attack scenarios.

The volume of submitted messages is not private to any application user.
Remediation Recommendations

UUIDs could be used instead of sequential message IDs. Alternatively, sequential message IDs on a per-user
basis is an improvement though it may not be effective if a future vulnerability relies on guessable IDs.

Additional Information

N/A

13

Appendix

Methodology

Our approach to testing is designed to understand the design, behavior, and security considerations of the
assets being tested. This helps us to achieve the best coverage over the duration of the test.

To accomplish this, Subgraph employs automated, manual and custom testing methods. We conduct our
automated tests using the industry standard security tools. This may include using multiple tools to test for
the same types of issues. We perform manual tests in cases where the automated tools are not adequate
or reveal behavior that must be tested manually. Where required, we also develop custom tools to perform

tests or reproduce test findings.

The goals of our testing methodology are to:

Understand the expected behavior and business logic of the assets being tested

Map out the attack surface

Understand how authentication, authorization, and other security controls are implemented

Test for flaws in the security controls based on our understanding

Test every point of input against a large number of variables and observe the resulting behavior
Reproduce and re-test findings

Gather enough supporting information about findings to enable us to classify, report, and suggest
remediations

Description of testing activities

Depending on the type and scope of the engagement, our methodology may include any of the following
testing activities:

1.

Information Gathering: Information will be gathered from publicly availble sources to help increase
the success of attacks or discover new vulnerabilities

Network discovery: The networks in scope will be scanned for active, reachable hosts that could be
vulnerable to compromise

Host Vulnerability Assessment: Hosts applications and services will be assessed for known or
possible vulnerabilities

Application Exploration: The application will be explored using manual and automated methods to
better understand the attack surface and expected behavior

Session Management: Session management in web applications will be tested for security flaws
that may allow unauthorized access

Authentication System Review: The authentication system will be reviewed to determine if it can
be bypassed

. Privilege Escalation: Privilege escalation checks will be performed to determine if it is possible for

an authenticated user to gain access to the privileges assigned to another role or administrator

14

8. Input Validation: Input validation tests will be performed on all endpoints and fields within scope,
including tests for injection vulnerabilities (SQL injection, cross-site scripting, command injection,
etc.)

9. Business Logic Review: Business logic will be reviewed, including attempts to subvert the intended
design to cause unexpected behavior or bypass security controls

Reporting

Findings reports are peer-reviewed within Subgraph to produce the highest quality findings. The report
includes an itemized list of findings, classified by their severity and remediation status.

Severity ratings

Severity ratings are a metric to help organizations prioritize security findings. The severity ratings we
provide are simple by design so that at a high-level they can be understood by different audiences. In lieu
of a complex rating system, we quantify the various factors and considerations in the body of the security
findings. For example, if there are mitigating factors that would reduce the severity of a vulnerability, the
finding will include a description of those mitigations and our reasoning for adjusting the rating.

At an organization’s request, we will also provide third-party ratings and classifications. For example, we
can analyze the findings to produce Common Vulnerability Scoring System (CVSS)* scores or OWASP Top
107 classifications.

The following is a list of the severity ratings we use with some example impacts:

Exploitation could compromise hosts or highly sensitive information

Critical Exploitation could compromise hosts or highly sensitive information

Exploitation could compromise the application or moderately sensitive information

High Exploitation could compromise the application or moderately sensitive information

Exploitation compromises multiple security properties (confidentiality, integrity, or availability)

Medium Exploitation compromises multiple security properties (confidentiality, integrity, or availability)

https://www.first.org/cvss/
2https:// 'www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

15

Low

Exploitation compromises a single security property (confidentiality, integrity, or availability)

Low Exploitation compromises a single security property (confidentiality, integrity, or availability)

Finding does not directly pose a security risk but merits further investigation

Info Finding does not directly pose a security risk but merits further investigation

The severity of a finding is often a product of the impact to general security properties of an application,
host, network, or other information system.

The properties that can be impacted are:
Confidentiality Exploitation results in authorized access to data

Integrity Exploitation results in the unauthorized modification of data or state

Availability Exploitation results in a degradation of performance or an inability to access resources

The actual severity of a finding may be higher or lower depending on a number of other factors that may
mitigate or exacerbate it. These include the context of the finding in relation to the organization as well as
the likelihood of exploitation. These are described in further detail below.

16

Contextual factors

Confidentiality, integrity, and availability are one dimension of the potential risk of a security finding. In
some cases, we must also consider contextual factors that are unique to the organization and the assets
tested.

The following is a list of those factors:

Financial Exploitation may result in financial losses
Reputation Exploitation may result in damage to the reputation of the organization

Regulatory Exploitation may expose the organization to regulatory liability (e.g. make them
non-compliant)

Organizational Exploitation may disrupt the operations of the organization

17

Likelihood

Likelihood measures how probable it is that an attacker exploit a finding.

This is determined by numerous factors, the most influential of which are listed below:

Authentication Whether or not the attack must be authenticated

Privileges Whether or not an authenticated attacker requires special privileges
Public exploit Whether or not exploit code is publicly available

Public knowledge Whether or not the finding is publicly known

Exploit complexity How complex it is for a skilled attacker to exploit the finding
Local vs. remote Whether or not the finding is exposed to the network
Accessibility Whether or not the affected asset is exposed on the public Internet
Discoverability How easy it is for the finding to be discovered by an attacker

Dependencies Whether or not exploitation is dependant on other findings such as information leaks

18

Remediation status

As part of our reporting, remediation recommendations are provided to the client. To help track the issues,
we also provide a remediation status rating in the findings report.

In some cases, the organization may be confident to remediate the issue and test it internally. In other cases,
Subgraph works with the organization to re-test the findings, resulting in a subsequent report reflecting
remediation status updates.

If requested to re-test findings, we determine the remediation status based on our ability to reproduce the
finding. This is based on our understanding of the finding and our awareness of potential variants at that
time. To reproduce the results, the re-test environment should be as close to the original test environment
as possible.

Security findings are often due to unexpected or unanticipated behavior that is not always understood
by the testers or the developers. Therefore, it is possible that a finding or variations of the finding may
still be present even if it is not reproducible during a re-test. While we will do our best to work with the
organization to avoid this, it is still possible.

The findings report includes the following remediation status information:

Finding is believed to be remediated, we can no longer reproduce it

Resolved Finding is believed to be remediation, we can no longer reproduce it
In progress

Finding is in the process of being remediated

In progress Finding is in the process of being remediated

Finding is unresolved - used in initial report or when the organization chooses not to resolve

Unresolved Finding is unresolved - used in initial report or when the organization chooses not to resolve

There is nothing to resolve, this may be the case with informational findings

19

	Overview
	Summary
	Observations
	SQL injection
	Cross-site scripting
	Cross-site request forgery

	Details
	V-001: Blind SSRF Private Network Enumeration in Profile Links
	Discussion
	Impact Analysis
	Remediation Recommendations
	Additional Information

	V-002: Client-Side Encryption Timeout Encryption Failure
	Discussion
	Impact Analysis
	Remediation Recommendations
	Additional Information

	V-003: Sequential Message IDs
	Discussion
	Impact Analysis
	Remediation Recommendations
	Additional Information

	Appendix
	Methodology
	Description of testing activities
	Reporting
	Severity ratings
	Contextual factors
	Likelihood
	Remediation status

